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Interior Symmetries of Hadrons: SO(3,2) as a 
Spectrum-Generating Group 

Sujeewa W i c k r a m a s e k a r a  l 

Received June 25, 1997 

In this work, we study some applications of the spectrum-generating group (SGG) 
formalism to obtain the mass-spin spectra of hadrons. The possibility of classifying 
(medium-energy) hadrons in terms of a symmetry group defining the center-of- 
mass motion and an SGG defining the interior motion is discussed. After 
considering the defining commutation relations and equations of motion of the 
generators of the SGG, it is shown how the hadronic spectral information is 
obtained through a Hamiltonian that is a constraint relation between the generators 
of the symmetry group and those of the SGG. 

1. INTRODUCTION 

It is the received point of view that a microphysical object is elementary 
in a particular energy range of interest if it carries no manifest internal 
structure in that range. The motions that such an object may perform are 
understood in quantum mechanics as bringing forth the group of symmetry 
transformations. Recall that a symmetry transformation is that which links 
observations of different, equivalent observers who look at the same physical 
system. In the linear topological vector space ~ ,  i.e., a Hilbert space or a 
dense subspace thereof, whose elements represent the states of the physical 
system, the symmetry transformations R(c0 are represented by the linear 
operators U(R(cO). In this notation, a denotes a set of continuous parameters 
satisfying the condition R(O) = I, the identity operator. Thereupon, the 
generators Oi of  the representation U(R(a)) of G, defined by 

Oi = i OU(R(.__._a)) 
OOti la =0 
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acquire physical content as the observables pertaining to the microphysical 
object. As a consequence of the property that the physical states are repre- 
sented not by the vectors but rather by the rays of the space ~ ,  the mapping 
R(cO "-" U(R(eO) furnishes a linear, ergo unitary (Wigner, 1939), projective 
representation of the symmetry group G. According to Wigner's pioneering 
work, relativistic elementary particles, in particular, are classified according 
to the continuous unitary irreducible projective representations of the Poincar6 
group 9 .  The eigenvalues m: and j ( j  + 1) of, respectively, the invariant 
operators M 2 and W of ~ uniquely characterize these representation spaces 
~(m, j )  of the group on any future-directed orbit in the Minkowski space. 
Along with the physical interpretation of m and j as the mass and the spin 
of the relativistic elementary quantum object, the two parameters which 
characterize such objects, the generators P~. and J~.v of the Poincar6 group 
are accorded meaning as the momentum and angular momentum operators. 

However, most microphysical systems, such as molecules, nuclei, and 
hadrons, manifest the behavior of extended quantum physical objects when 
the energy is sufficiently high. In the view adopted here, hadrons, in particular, 
are considered as extended relativistic objects. In this limit the symmetry 
group G of the relevant space-time acquires reality as the group formed by 
the motions of  center of mass of the extended object. In addition, the extended 
object also performs interior collective motions and the motions of the constit- 
uents: the diatomic molecule can execute rotations about its center of mass, 
vibrations along its internuclear axis, while its electrons can rapidly rotate 
or spin about the direction of the internuclear axis (the rotating-vibrating 
dumbbell with a flywheel). The group that describes these interior motions, 
in contrast to the center-of-mass motions, is the Spectrum-Generating Group 
(SGG), which is also known, perhaps more commonly, as the Dynamical 
Group. 

The initial physical motivation for the SGG (in the 1960s) for the mass 
spectrum was the enormous proliferation of hadrons. Hadrons exist with 
rather high angular momentum, and some masses follow a simple emmpirical 
formula m z = m~ + (1/o~')j, where (m,j) = (mass, spin), and , / a '  is a 
constant with dimension of length--an elementary length. If the mass mea- 
sured in units of GeV is given by the spin measured in units of 1 (for h = 
1, c = 1), or by any other dimensionless (for h = c = 1) observable, then 
there must exist a constant of dimension cm that converts the units. This is 
analogous to c being the constant of nature that converts time measured in 
units of cm into time measured in seconds x = ct, and to h being the constant 
that converts energy units into frequency units E = hr. The idea that, in 
addition to the constants c and h, there must exist a third fundamental constant, 
an elementary length e, in fact, goes back to Heisenberg (1936). For the 
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hadron spectrum the elementary length must be ~ ,~- 10 -13 cm = 
1 fm; ~ /a '=  0.19 fm or l / , f s  7 ~ 1 GeV. 

The large number of hadrons discovered and the relations observed 
among them such as the above mass-spin formula do not permit one to view 
them all as truly elementary particles. Instead, one is led to the possibility 
that they are various states of one single structured relativistic quantum 
system. Thus, the hadron (mass) spectrum can be connected to a hadron 
structure. This is a rather familiar idea in molecular and nuclear physics. The 
structure of molecules and nuclei is understood in two complementary ways: 
in terms of their constituents and in terms of their (collective) motions. In 
low-energy molecules and nuclei, the dominant feature is the collective 
motions, while the constituent excitations become important only at much 
higher energies. Similarly, hadrons (just like molecules in the <10 -4 eV 
region) behave like elementary (pointlike) particles at very low energies, 
and like composite aggregates of elementary pointlike constituents (partons, 
quarks) at very high energies. The standard model applicable in the high- 
energy domain (or large-momentum-transfer limit) is QCD, which explains 
the unstring-like behavior of hadrons at short distances in terms of a small 
number of pointlike constituents. At intermedeate energies, however, hadrons 
can be seen to demonstrate the properties expected of extended (relativistic) 
objects performing collective motions. The motions of the center of mass of 
an extended object, just like those of an elementary particle, form the symme- 
try group, the generators of which now describe the center-of-mass observ- 
ables. The interior, collective motions (rotations and vibrations) form the 
spectrum-generating group, and their generators give the interior observables. 
Thus, by a spectrum-generating group we mean a group (in general a non- 
compact one) which gives the energy or mass spectrum of a quantum mechani- 
cal system (Barut and Bohm, 1965). 

The spectrum-generating group, in this light, displays the interior sym- 
metries arising from the interior collective motions of the extended object. 
The properties of the generators of the SGG, which then represent the interior 
observables such as distances (electric dipole operators), quadrupole opera- 
tors, and interior (relative) momenta, are not obvious and sometimes quite 
surprising. For instance, the components of the intrinsic momenta (also the 
distances) need not commute among themselves because the fast motion of 
the constituents (partons, quarks, dyons) can induce into the dynamics of the 
slow collective motion gauge potentials which lead to noncommuting covari- 
ant momenta, etc. (Bohm et al., 1992). As a consequence, the choice of the 
group for interior motions, the SGG, is also not obvious and depends upon 
the properties of each particular extended object. 

The interior observables cause transitions between different vibrational 
and rotational states of the extended object (e.g., dipole operators describe 
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transitions between energy eigenstates). These different (vibrational and rota- 
tional) energy levels of the intrinsic degrees of freedom are labeled by discrete 
quantum numbers such as v (for vibrational excitations) and j (for rotational 
excitations). In the case of hadrons these excited states (v, j )  are the different 
hadrons described by different irreducible representation spaces of the sym- 
metry group 3', and therefore these spaces ~(m, j )  must be also labeled by 
these quantum numbers: ~mj~ = ~ ( m ( v ,  j ) ,  j ) .  The level splitting (mass 
spectrum) m = m(v,  j )  between the levels labeled by v (vibrational quantum 
number) and j (rotational quantum number) is given by the elementary length 

= ~ ~ 0.2 • 1 0  -13 c m  through, e.g., formulas like m 2 = m02 + (1/a')v. 
For the states with v = j (yrast states in the terminology of nuclear physics) 
one is back to the empirical formula for the linear Regge trajectory mentioned 
above. "This identifies the hadrons on a Regge trajectory with the yrast  states 
of a relativistic vibrating rotator (see Section 4). 

The irreducible representation spaces ~V(m(v, j) ,  j )  of the group describ- 
ing the motions of the center of mass of an extended object are associated 
with different states (subspaces labeled by (v, j))  of an irreducible representa- 
tion space of the SGG. Hence, a theory of extended relativistic quantum 
objects can be arrived at through a certain careful union of the symmetry 
group G = ~ and the spectrum-generating group. 

2. INTERIOR OBSERVABLES AND SPECTRUM- 
GENERATING GROUP 

As mentioned above, the generators of the Lie algebra of SGG represent 
the observables which describe the interior motion of the extended relativistic 
quantum system. The choice of these observables and the corresponding 
SGG depends on the way one specifies and treats both the interior motions 
themselves and their essential nonseparability in the relativistic limit from 
the motions of the center of mass. In this section we postulate the interior 
observables, and in the next we discuss the Lie algebra of the SGG they 
generate. 

It is recalled that in the theory of the nonrelativistic quantum rotator 
(Bohm, 1979) an operator D, a vector with respect to S0(3)s~1, is introduced 
to represent the symmetry axis. Here, S o are the generators of the Lie algebra 
of SO(3), the group of rotations about the center of mass (c.m.), and they 
satisfy the commutation relations (c.r.) 

[So., Skt] = -i(gi~Sjt + gjflik - gitSjk - gjkSil) ' (2.1) 

The interior position operators D; transform between different irreducible 
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representations R s of SO(3). Since D is taken to be a vector operator, the D i 

fulfill with the S 0. the following c.r.: 

[Di, Sjk] = --i(gqDk -- gikDj) (2.2) 

If the__,rotator consists~ of charges +e and__, - e  centered.__, resp~tively at Q(+~ 
and Q(_~, then D is simply the vector (Q(+~ - Q(_~) and eD gives the di- 
pole moment. To determine the structure of the group that D i and Sej generate, 
we have to determine the c.r. for the Di. Conventionally, the interior position 
operators Di and their conjugate momenta Hi =- (m(-)P(+)i -- m(+)P(-)i)] 
(m(+) + m(+)) are taken to satisfy the canonical commutation relations 

[Oi, Dj] = 0, [ H i ,  l - l j ]  -= 0, [1-Ii, Dj] = il~ij (2.3a) 

On the basis of (2.1), (2.2), and (2.3a), it is generally concluded that E(3), 
whose generators are Di and Sir, is the SGG for the nonrelativistic rotator. 
The commutation relations (2.3a) can be derived from the assumption that 
the operators Pt_*)i and Q(+_~i satisfy the following commutation relations: 

[P(=)i, Q<:)r] = i~o, [P(:)e, Q<z-v] = [P(+)e, P(-)j] = [Q<+)i, Q<-)r] = 0 

This would mean that the centers of positive and negative charge behave 
like unconstrained mass points, independently governed by two Galilei groups 
~3. This is unlikely to be fulfilled for points inside an extended object, and 
it is therefore necessary to consider other candidates for SGG in addition to 
E(3). This also means that, for the interior operators the conventional c.r. (2.3a) 
would have to be abandoned. Two alternatives that have been considered are 
the following: 

[D, Dj] = - i S  o (2.3b) 

[De, D r] = iSq (2.3c) 

Commutators (2.3b) and (2.3c), together with (2.1) and (2.2), respectively 
lead to the groups S0(3 ,  1)ol,s o D SO(3)s o and SO(4)o~,s U D SO(3)s o as the 
corresponding spectrum-generating group. The use of S0(3 ,  l)De.~,-j as the 
SGG was suggested for the first time in Barut and Bohm (1965) and we 
shall encounter it again as the relativistic SGG for hadrons in the c.m. rest 
frame [see (4.48a)]. The other choice, SO(4)o~,so, has also been used in nuclear 
physics (Iachello et al., 1982). 

The Hamiltonian for the nonrelativistic rotator is given by 

H = + - -  (2.4a) 
2M 21 

where Pz are the generators of the symmetry group cg describing the c.m. 
motion. The expression (2.4a) for the energy in terms of the generators of 
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the center of mass symmetry group and the spectrum-generating group leads 
to the energy spectrum of the rotating diatomic molecule: 

1 
E = 2II s(s + 1) + kinetic energy of c.m. (2.4b) 

As mentioned in Section 1, the interior operators cause transitions between 
different physical states of the extended object. Operators D i indeed perform 
such transitions between different s-states, and the transition probabilities are 

t proportional to the matrix elements I(s+ 1, s31D [ss3)l 2. 
In this light, we expect to obtain the hadron spectrum by finding an 

SGG. We seek for the interior position (momentum) operator a relativistic 
generalization of the operator D(~) .  As seen above in (2.3) and as mentioned 
in Section 1, the choice is not obvious even in the nonrelativistic case, since, 
due to the fast motion of the constituents and the resulting induced gauge 
potentials, the gauge-covariant momenta may not commute (Bohm et al., 
1992). Therefore in the relativistic case also we should not expect that the 
components of the interior positions and momenta commute. We favor for 
the interior position a definition that has its origin in the Zitterbewegung of 
a classical relativistic object (Corben, 1968; Mathison, 1937). This interior 
position is given by 

dr = - S r , ~ M  -I (ix, v = 0, 1, 2, 3) (2.5) 

where P~ = P"M -1. The operators P~ and M = (pr are respectively 
the c.m. momentum operator and the mass operator. This definition of the 
operator M requires that the PC fulfill the condition P~P~ > 0 (see Section 
4). Sr are the relativistic generalizations of operators S 0. defined in (2.1), 
and can be interpreted as the generators of the Lie algebra of an interior 
proper Lorentz group S0(3 ,1)s~  if we require that they satisfy the commuta- 
tion relations 

[S~, Sp,~] = - i (g~pS~ + g,oS~o - g~S~p - g~oSr (2.6) 

In analogy to the nonrelativistic relations Jij = Lgj + S• and the 4-dimensional 
Dirac case Jr,, = Lr + ~o-,~, we also require the infinite-dimensional opera- 
tors S~  to appear in the generators J ~  [which themselves satisfy the c.r. 
(2.6)] of the physical Lorentz group as 

J ~  = L ~  + S~  (2:7a) 

This is motivated by the expression for the classical quantities 

J~,~ = X~P~ - X~P~ + S ~  (2.7b) 
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As in the 4-dimensional case, we may require that (2.7a) hold only in the 
spinor basis. Furthermore, we require that the operators L ~  and S ~  in (2.7a) 
fulfill the following conditions: 

[Lw~, Sw] = 0 and �89 p" = 0 (2.7c) 

An immediate consequence of (2.6) and definition (2.5) of d~ is the commuta- 
tion relation 

- i  
[d~, d~] = "-~ (S~,~ + d~,P~ - d,,P~,) (2.8) 

Thus our interior position operators dF--for  that matter, even their compo- 
nents on a 3-dimensional spacelike hypersurface--do not commute. However, 
in the nonrelativistic contraction limit c ~ oc, the d,, go over into commuting 
operators d~, (and d~ :~ = 0) (Aldinger et al., 1984). This limiting case, in 
fact, is one justification of the interpretation of d~, as the interior position 
operators. 

The position X~ that appears in (2.7b) can now be given in terms of d~ 
and the mean position of the extended object Y~,: 

X~('r) = Y~('r) + de (2.9) 

where Yr = / 5  = p ~ M - l .  
A straightforward calculation shows that the expression on the right in 

(2.8) is related to the spin tensor E ~  of the Poincar6 group: 

i 
[de, d~] = M2 E~, (2.10) 

= ~p v~ �9 " = -/5~fi~,anddiag.'q~,~ = (+1,  - 1 , - 1 , - 1 ) .  where E~.,, g[~g,,Sp,x, g~.~ "q~.,, 
If the spin is not to be restricted to just one value, but allowed to have 

a nontrivial spectrum as on a Regge trajectory, then an operator is needed 
to describe the observable that performs transitions between different spin 
states, i.e., between two or more irreducible representations spaces ~(m,  j )  
of the symmetry group @. Such an operator cannot clearly be constructed in 
terms of the generators of the algebra of @. Thus, in analogy to the Dirac 
~ ,  matrices, which serve a similar purpose for the theory of the electron, we 
choose for this observable a Hermitian vector operator A~ which, together 
with S ~  (like ",/~ and o '~ of Dirac) forms the Lie algebra of the group 
SO(3, 2)%.s~ .. This infinite-dimensional generalization of the Dirac case is 
our choice for the relativistic SGG. Along with (2.6), we then have the 
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following defining commutation relations for the Lie algebra of SO(3, 2), 
the SGG of our relativistic extended quantum system: 

[St, ~, Fp] = i(g~pF~, - g~,pF~) (2. t 1) 

[F~, F~] = -iS~,v (2.12) 

By (2.11), Fr is a Lorentz vector operator with respect to the group 
S0(3 ,  1 )s~,~. 

The interior (noncommuting) momenta can now be defined in terms of 
F~, by 

- 1 1  
"rr~- ct' M ~ F "  (2.13) 

where a '  is the constant discussed in Section 1. For a justification of this 
definition we have to consider the relativistic Hamihonian, the subject of 
Section 4. 

3. MATHEMATICS OF SO(3, 2) 

3.1. Lie Algebra of SO(3, 2) 

In place of the operators S~,, and F~ of Section 2 satisfying the commuta- 
tion relations (2.6), (2.11), and (2.12), we may consider the operators San = 
-Sea  fulfilling the commutation relations 

[San, SCD] = --i(gacSso + gBoSAc -- gaoSsc - gBcSAD) (3.1) 

where (A, B = 0, 1, 2, 3, 5) and diag.gaB = (+1,  --1, --1, --1, +1). 
The operators San generate the S0(3 ,  2) group and are called the Her- 

mitian basis for the Lie algebra of S0(3 ,  2). 
The S0(3 ,  2) has two Casimir operators constructed from these genera- 

tors: the quadratic Casimir operator 

1 
C 2 ~- "~ gAB SAB (3.2) 

and the fourth-order Casimir operator 

C4 -~- --WA WA (3.3) 

where W A = �89176 Identifying S~s = F~,, where (~ = 0, 1, 2, 3), 
we can immediately obtain from (3.1) the commutation, relations (2.6), (2.11), 
and (2.12). We may also define 

1 
Sol ~ K i and Si =- -~ ~-o~Sjk (3.4) 
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and thereupon from (3.1) we obtain the following commutation relations: 

[S i, Sj] = i~ij tS k (3.5a) 

[Si, Kj] = i~-ijkKk (3.5b) 

[Ki, Kj] = - i~ijkSk (3.5c) 

[Si, Fj] : ir (3.5d) 

[Fi, Fj] : - - i~i jkS k (3.5e) 

[Ki, Fj] = - i~ jFo  (3.50 

[S~, F0] = 0 (3.5g) 

[Ki, Fol = -F~ (3.5h) 

[F,-, F0] = K~ (3.5i) 

From (3.3a) we see that the operators Si generate an SO(3) group, By (3.5b) 
and (3.5d), the Ki and Fi are vector operators with respect to this group, and 
by (3.5g), Fo is a scalar operator. It is also clear from these commutation 
relations that both the K,- and the Fi, together with the Si, separately generate 
two SO(3, 1) groups, which can be denoted respectively by SO(3, l) and 
S0(3, 1 )s~j.r~. 

Although for an nth-rank compact group the eigenvalues of the n invari- 
ant operators uniquely specify the irreducible representations (irreps) of  the 
group, for a noncompact group, in general, the invariant operators are not 
sufficient to distinguish the irreps. For SO(3, 2), in particular, a third label, 
the minimum (or maximum) eigenvalue of F0, depending on whether Fo is 
bounded from below (or above), is generally needed. 

For the purposes of this paper, we are interested only in the singleton, 
i.e., the multiplicity-free, irreps of S0(3, 2). 

3.2. Reduction Chains of SO(3, 2) 

There are three subgroup chains which are convenient for discussing 
the irreps of the S0(3, 2) saB: 

S0(2)s~2 C SO(3)s~j C S0(3, l )s~ C S0(3, 2)sA8 (3.6) 

SO(2)sj2 C SO(3)sij C SO(3, 1)s,j.r~ C SO(3, 2)SAB (3.7) 

SO(2)SL2 C SO(3)s,j C SO(3)sij Q SO(2)ro C S0(3, 2)saB (3.8) 

The reduction chains (3.6) and (3.7) are mathematically equivalent, but physi- 
cally different. In the following subsection we will first discuss in some detail 
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a particular class of representations based on the reduction chain (3.6), and 
then briefly outline how some singleton irreducible representations based on 
the reduction chain (3.8) are obtained. 

3.3. Irreducible Majorana Representations of SO(3, 2) 

Consider the reduction chain (3.6). Since we are interested only in the 
singleton irreps, a canonical set of commuting operators (c.s.c.o) can be 
chosen to consist of the invariant operators of the subgroups in the reduction 
chain. Hence a c.s.c.o, would be 

I 1 
C, = ~ S~ S ~, Cz = ~ ~ '~"  S~,~S~,,, 5 2, S,2, F0 = S05 

(3.9) 

where Ct and C2 are the two Casimir operators of S0(3, 1)%,r Without 
further specifications, there are still many representations of S0(3, 2), and 
additional restrictions are necessary, as we consider only singleton representa- 
tions. One class of infinite-dimensional irrep that is of interest (see relativistic 
quantum rotator, Section 4) can be obtained by means of the constraint relation 

{F~,, F o} + {S~, S p~} = - ~  (3.10) 

or equivalently, 

{SAB, ScB} = _~c  (3.1 1) 

The representations which fulfill this condition are called irreducible Majo- 
rana representations or, following Dirac, remarkable representations. They 
are isomorphic to the representations of S0(3, 2) for which the generators 
are realized by a pair of boson operators. The main feature of these representa- 
tions is that each contains only one irrep of the SO(3, l )s~ subgroup. 

It is recalled that the linear irreducible representations of SO(3, 1)%, v 
are characterized by two numbers (ko, c), where ko is an integer or half-odd 
integer and c an arbitrary complex number. In terms of k0 and c, the Casimir 
operators are given by 

1 
Ci = ~ S~,S ~ = k~ + c: - 1 (3.12) 

1 
C2 = -~ ~ "  S~Sp, ,  = ikoc (3.13) 

Setting p = tx in (3.10) yields 

{F~, F ~} + {S~, S ~} = - 4  or F~F~ + S~,  S ~ = - 2  
(3.14) 
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Setting A = C in (3.11) yields 

{SAs, S A~} = - 5  
1 5 

or F~F~ + ~ S ~ S ~  = - ~  (3.15) 

From these it follows that 

1 3 
Cl ~- Sp.vS p.v -m. Soi S~ + -~ SijS ij = - -~  (3.16) 

1 
F~F~ = 2 (3.17) 

and 

1 
C2 =- -: r S~vSpo = 0 (3.18) 

~5 

These results can be used to solve (3.12) and (3.13) for k0 and c: 

(3.19) 

o r  

(3.19) implies a reduction of the representation space of SO(3, 1) in terms 
of the integer-j irreducible representation spaces R j of the rotation group, 
while (3.2a) implies a reduction in terms of the half-odd-integer irrep spaces 
RL Since the generators of S0(3, 2) contain no operator which transforms 
between the states of integer and half-odd-integer angular momentum states, 
these results lead to the conclusion that the irrep space ~soo,2~ of  the group 
S0(3, 2) reduces either as 

~S0(3.2) = ~ ko = O, c = = ~ Gift  J (3.21) 
j =  ko,ko + I . . . .  

o r  a s  

~s0(3.2) = ~ k0 = g ,  c = 0 ~ G ~  j (3.22) 
j =kO,kO ~ I . . . .  

G 
The symbol = means that the spaces are equal when the transformations are 
restricted to the subgroup G. From these reductions we see that the basis 
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vectors can be characterized by j and J3, where j = 0, 1, 2, 3 . . . .  for (3.21) 
and j - ~, 3, z,5.., for (3.22). We denote them by 113), and in this basis the 
c.s.c.o, chosen above has the following eigenvalues: 

Ci = (kg+ c 2 -  1) = - 4 j 3  

:3) C2 = ikoc = 0 

Another consequence of the condition (3.10) is that the matrix elements of 
Fo are determined up to a sign by the matrix elements of ~2. This can be 
easily seen if we set p = i~ = 0 in (3.10) and solve for F0 the resulting equation 

2F0 z + 2SoiS Oi= - 1  (3.23) 

and with the equation (3.16). Thus, Fo z = ~2 + a 

F~ j ]  = (~2 + 1 ) j ) = ( j  1) j ) = ( j + l ]  z j~  (3.24) 
J3] 4 J3 (J + 1) + ~ J3 2] IJ3] 

The eigenvalues of Fo, therefore, are •  + �89 Therewith, we have obtained 
from the reduction chain (3.6) four infinite-dimensional Majorana irreducible 
representations of the group S0(3, 2)s~,~.r~, characterized by the sign (positive 
or negative) of the eigenvalues of Fo combined with the integer or half-odd- 
integer values of j .  In these representations the vectors Ij3 ) have the following 
transformation property under an element A of the Lorentz group 
S0(3, 1)s~,v: 

J3) f) U(A) = ~] d~k~ ) (3.25) 
-j'<i3-~/ j ;  

j ' = k o , k o + l  . . . .  

where 

U(A(to)) = ei~ ~ and 
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3.4. A Summary of Singleton Representations of SO(3,  2) 
Which Contain the Maximally Compact Subgroup 
SO(3)  | SO(2)ro 
Next  we will consider the reduction chain (3.8) that uses the maximal ly  

compact  subgroup SO(3)sij | SO(2)r0 of the group S0(3,  2)sr Again,  we 
are interested only in certain singleton irreducible representations of  
S0(3,  2)s~,,.r~,, i.e., irreps in which an irrep of  SO(3)si | SO(2)r0 appears  at 
most once. For these representations the operators ~'0, S z, and $3 form a 
canonical set of  commut ing  operators and we can use their eigenvalues as a 
complete  set of  quantum numbers for the basis vectors IIXjj3), where 

1 
FoIIXjj3) = IXlixjj3) , -~ SijSiJIIXjj3) = j ( j  + l)ll.zjj3), S3IIXjj3) = j3lktjj3) 

(3.26) 

By induction, Ix, j ( j  + 1), and J3 are in fact the eigenvalues of  the covariant  
operators PvF ~, 1-5" S'~ ,v and Z 3, and (3.26) holds on the subspace of  the 2 ~ l . ~ v ~  
rest-frame states. We note that for the Majorana irreducible representat ions 
considered in the section above,  this new quantum number  is redundant,  as 

! 
I x =  J + T -  

For our purposes,  we are interested only in the unitary singleton represen- 
tations for which Fo is bounded from below or f rom above. This class of  
representations is characterized by the two numbers 

Ixmin ( i x m a x )  = lowest  (highest) value of  Ix 

s = lowest  value of  j (3.27) 

The eigenvalues  of  the Casimir  operators (3.2), (3.3) 

1 
R = eigenvalue of  C2 = ~ SanS a8 

P = eigenvalue of  C4 = - W a W  a (3.28) 

are given in terms o f  ~m~, and s. In this class of  representations we identify 
three subclasses:  

I 
Ixmi, ~ -- with 

2 
s = 0 ,  

1 
S ~ R 

2 '  

3 5 
S =  1 , ~ , 2 , ~  . . . .  

Ixrnin ~ 1 w i t h  

9( 
R = ~. - Ixmi, - (3.29a) 

R = ~ - IX~.~ - (3.29b) 

Ixrnin = S + 1 with R = 2 - 2(ix,,i, - 1) 2 

= 2(1 - s z) (3.29c) 
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For all three cases, the eigenvalue of the fourth-order Casimir operator is 
given by 

P = s(s + 1)[R - (s - 1)(s + 2)] 

In the discussion of the hadron spectrum (see Section 5), we will use some 
of these singleton representations and their weight diagrams, which are also 
called K-types. 

4. R E L A T I V I S T I C  H A M I L T O N I A N  AND T H E  DYNAMICS OF 
I N T E R I O R  OBSERVABLES 

In order to model the dynamics of the interior observables, we next 
have to conjecture the constraint relation between the generators of the 
symmetry group and SGG [a relativistic generalization of (2.4)]. These rela- 
tions can be expressed as 

(P~'P~ - MZ(ar~, d~,...))qb = 0 (4.1a) 

and some subsidiary conditions such as 

L+ = O, where L = P~d ~ and/or L = P~Tr ~ and/or L = P~,E ~'~ 
(4. lb) 

here is a nonlocal field, and M 2 is a function of the interior observables. 
As we shall soon see, for different models, one has different functions for 
M such  as M 2 = --Ix2~ ~ . v  for  the rotator model and M 2 = (I/ct)P~F ~ for 
the oscillator. L eliminates timelike excitations (ghosts), and since our d ~, 
-rr ~, and Y,~'~, defined respectively by (2.5), (2.13), and (2.10), automatically 
fulfill (4.1b), there will be no ghosts. 

Using the theoretical framework of constraint Hamiltonian mechanics 
(Dirac, 1964), we can obtain the Hamiltonians from the constraint relations 
(and vice versa). 

Many relativistic Hamiltonians have been considered (Aldinger et  al., 

1983; Bohm et al., 1985a, b). The simplest is that for a structureless mass 
point: 

H = v (Pr  ~" - m~) (4.2) 

where v is the usual Lagrange multiplier of  constraint Hamiltonian mechanics. 
It can be determined by the choice of  the parameter 'r for the c.m. proper 
time with respect to which the equations of motion for the observables 
are derived. 
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For the relativistic string, on the other hand, the Hamiltonian is very 
complicated: 

( ) H = v P~P~ + - -  ~ a_,.~,e~+,,~ - const (4.3) 
0(. ,n= I 

The mass operator here is given in terms of infinitely many creation (ot~_,,) 
and annihilation (a~,,) operators, which are not--l ike our d~ and "rr~--all 
spacelike. The difficulties of (4.3), which have their origin mainly in the choice 
of the relativistic canonical intrinsic positions and momenta, are well known. 

4.1. Relativistic Quantum Rotator 

For manageable, realistic models, we expect the Hamiltonian to be 
somewhere in between (4.2) and (4.3). As examples, we discuss a model for 
a relativistic quantum rotator in this section and a model for a relativistic 
quantum oscillator in the next. 

Let us first note that the names such as relativistic quantum rotator and 
oscillator are justified mainly by the correspondence between these models 
and the well-established models such as the elementary relativistic particle, 
the nonrelativistic quantum (rigid) rotator, and the nonrelativistic harmonic 
oscillator. In particular, the relativistic quantum rotator (RQR) model, consid- 
ered as that of a relativistic extended object characterized by an elementary 
length parameter R, contracts to the relativistic elementary particle model 
when the length parameter is taken to infinity. In the nonrelativistic contraction 
limit, i.e., c ---, ~, the RQR goes over to the familiar rigid rotator of 
atomic physics. 

The observables for the RQR can be constructed in terms of the interior 
operators defined in Section 2. At that stage the constraint relations between 
the generators of the symmetry group and the spectrum-generating group 
were not imposed, and the interior operators S~,~ were assumed to commute 
with the center-of-mass operators such as Pw In accord with this assumption, 
the position X~ that appears in (2.7b) can be defined by the following commu- 
tation relations: 

[J~,  Xp] = i(g,,gY~. - g~gY,,) (4.4) 

[P~, Xp] = ig~pl (4.5) 

[X~, X~] = 0 (4.6) 

In analogy to the opera tor /5  defined in Section 2, it is convenient to define 
an operator X'~, by 

X~ =: X ~ M  (4.7) 
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where, as before, M = (p,/Sv)ln. Then by (4.5), we obtain the following 
commutation relations: 

[M, Xr = i/5r (4.8) 

In terms of these operators, the total angular momentum operator J~, in (2.7) 
can be written as 

J ~  = Xv.P,, - XO~ + S~,~ = f(~,P~ - X ~  4- Sj,~ (4.9) 

In order to conjecture the Hamiltonian for the RQR model, we now consider 
the following operator: 

B~ = P~ - k/~ (4.10) 

where 

t , , ,  = E I J , , , ,  P " }  = 

is the center operator of Finkelstein (1949). h in (4.10) is a constant of 
dimension MeV, and d~ = d~,M. As can be verified in a straightforward 
manner,/~, is a Lorentz vector operator with respect to J~,~ and fulfills the 
following commutation relations: 

[/~,/~,] = iJ~.,, (4.11) 

As a result, B~ in (4. I0), another vector operator, fulfills the commutation 
relations 

[B~, B,,] = ik2J~v (4.12) 

which can also be written in a dimensionless form as 

IBm, B,I =/JCv (4.13) 

where B~, (11k)B~ (l/h)pr ' t : - _ 

By (4.13), it is clear that the J ~  and the vector operator/~, generate 
the group SO(4, l)a~,.4, ,. Thus the operators / ~  are the generators of  the 
S 0 ( 4 ,  1) rotations, and, in particular, in the dimensional form, the B~ are the 
generators of motion along a (4, 1) de Sitter sphere of radius R = I lk .  The  
group S0(4 ,  1)a~,,4,~ has a Casimir operator C given by 

I 
C = B~B ~ - ~ J ~ . / ~  (4.14) 

Thereupon, we propound as a basic postulate that, in the same way as the 
relativistic mass point is characterized by the eigenvalues m 2 of the Casimir 



Interior Symmetries of Hadrons 2425 

operator P~P~" of  the Poincar6 group, the relativistic rotator is the model 
which is characterized by the eigenvalues k2ct 2 of the Casimir operator 

h 2 
h2C = B~B ~ - -~ J ~ J ~  (4.15) 

of  the group S0(4 ,  I)B~,j~. 
This leads to the constraint relation 

h2 
B~B ~ - ~ J ~ J ~  - k2a 2 ~- 0 (4.16) 

for the RQR, in contrast to the constraint relation 

Pr - M 2 ~- 0 (4.17) 

for the relativistic elementary particle. Notice that the equalities in (4.16) 
and (4.17) are weak, h la Dirac. This constraint relation, according to the 
formalism of the constraint Hamiltonian mechanics, leads to the following 
expression for the Hamiltonian of the RQR: 

H =  v B~B ~ - - ~ - J ~ , 3  ~ ' -  X2et 2 ~ - 0  (4.18) 

where v is the Lagrange multiplier discussed above. 
The expression (4.18) for the Hamiltonian of the RQR can be justified 

by considering the limiting cases k ~ 0 and c --4 oo. As mentioned above, 
the parameter ~. is the inverse radius of  a de Sitter sphere. If the notion that 
gravitational processes result in a curved space can be extended to strong 
interactions as well, then we can view these interactions in a certain state of 
equilibrium as generating a micro de Sitter universe-- just  as the gravitational 
processes cause a de Sitter universe. Since the strong interactions are much 
stronger than the gravitational interactions, we have to consider a much 
smaller de Sitter universe. The group of motion in such a model, finite in 
space, infinite in time, is not the Poincar6 group, but the 4 + 1 de Sitter 
group. Therefore, the B~, which generate the motion along this curved space, 
must, in the h ~ 0 (or R ~ oo) limit (i.e., when the curvature of  the de Sitter 
space tends to zero), contract to the observables which generate the motion 
in the f lat  space, i.e., the Pw Hence in the limit h --> 0, SO(4, l)n~.t~ must 
contract to the Poincar6 group. 

In order to obtain a faithful representation of the Poincar6 group, when 
taking the limit h ---> 0, we must perform the contractions through a series 
of  representations for which ct --~ oo such that 

lim k2et 2 = mo 2 (4.19) 
k--~ 



2426 Wickramasekara 

In this limit B~ -+ P~, and the Hamiltonian (4.18) reduces to that of relativistic 
elementary particle, (4.2). 

In a similar fashion, in the limit c --+ % i.e., when the Poincar6 group 
by the Inonu and Wigner (1953) contraction goes into the Galilei group, the 
Hamiltonian (4.18) reduces to the following expression: 

H = if2 + ~(=)2 + _  a 2 _  (4.20) 
2M 2M 2M 

This is the energy operator of the nonrelativistic rotator (2.4a) up to the 
arbitrary constant (h 'Z /2M) (o f l  - 9/4), if we take 

1 
I = 7 ;  M = R 2 M  (4.21) 

A" 

and if S in (2.4a) represents the angular momentum in the c.m. frame [see 
(4.48b)]. 

In order to obtain the mass spectrum, we establish a simpler form of  
the Hamiltonian (4.18) which explicitly contains the Casimir operators p p p v .  

and LY X~'~ of the Poincard group. First consider the Pauli-Lubanski- 
2 -p.v- 

Bargmann vector g,~ defined by 

1 
~ = -~ S~ ,~ , ,PvJ  p" (4.22) 

Since L~v that appears in (2.7a) fulfills the condition �89 p" = 0, and 
since %~p,,P~(dPP ~ - d~P p) = 0, ff~, can also be written as 

1 1 
g,~, = ~ %~p,,/~S ~ = ~ %~p~,/3~Z~ (4.23) 

and it obeys the supplementary condition P~ff~ = 0. Hence, 

1 
= = _ p P Sm,S~ g" - ~ "  ~ S~ s~'~ ~p~ 

1 
= ~ S~,,S ~ - d~d~' (4.24) 

or  

1 (4.25) 
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By inserting (4.10) into (4.18) and using (4.13) and (4.25), we obtain by a 
straightforward, albeit lengthy, calculation 

( 9 kz -- K2W - k2o~2) (4.26) H = v P~P~ + 

Here we see that, if we choose the eigenvalue of the S0(4,  1) Casimir operator 
to be one of the values of the principal series representation, then the Poincar6 
group representation, related to it by (4.10), has timelike P~, i.e., P~P~ > O. 
This permits the definition of the positive-definite operator M by M = 
(p~p~,)J/2. 

In order to obtain a mass formula pertaining to the RQR and discuss 
the dynamics of its observables, we now consider the model in the irreducible 
Majorana representations of the spectrum-generating group S0(3 ,  2)s~v.r~, 
discussed in Section 3. Using the condition (3.t2), from (4.23) and (4.25) 
we obtain, respectively, 

1 
~v. = ~ % v ~  PVclPF'~(P" F)- I (4.27) 

and 

1 I~ = PP/5"FpF,~ - ~ (4.28) 

Then from (4.26) we obtain for the Hamiltonian of the RQR in the irreducible 
Majorana representations the following expression: 

( 5h'2-- X2(ppFP)2- k2ct2) H = v P~,W" - ~ (4.29) 

This expression, prior to imposing the constraint relation (4.16), can be used 
to compute the time derivatives of the observables (~ defined by 

d~ ~ 1 [~, HI 
d'r t 

Thus, straightforward calculations give 

Xr = 2vP~. + vk2lP'F, Fr - (P'F)P~IM-' 

and 

d~. = vk2{P.F,  F~ - (P-F)P~,}M-' 

(4.30) 

(4.31) 

(4.32) 

To arrive at (4.31), we have used the fact that before the constraint is imposed, 
X~, commutes with F,~. From (2.9), we obtain Y~, in terms of ~], and d~,: 

~'~ = ~'~ + d~ (4.33) 
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Therefore, by using (4.31) and (4.32) in this expression, we find that 

~'~, = -2vP~ (4.34) 

This result shows that the velocity of the center of mass is parallel and 
proportional to the momentum Pw Although [as a result of the commutation 
relations (2.10) and (4.6)] the Y~, do not commute with one another, the 
operators 1;'~ do. 

As mentioned in (4.2), we can determine the Lagrange multiplier v that 
appears in the Hamiltonian (4.29) if we choose the parameter "r as a way of  
defining a center-of-mass proper time with respect to which the equations 
of motion (4.30) are defined. It must be noted, however, that there is no well- 
defined world line for the center of  mass in a quantum mechanical theory. 

If we choose in particular the gauge condition 

dY~ dYr 
- I (4.35) 

d'r d'r 

we get from (4.34) 

/ 

= --+2 M-t  (4.36) V 

where, as before, M = (p~pv.)l~. 
In accordance with the interpretation of (4.34), the minus sign is the 

correct choice for v in (4.36). Hence, 

~'~ = P,M-t  = p~ (4.37) 

Therefore, by (4.36) and (4.32), we find 

k 2 
3~ = d~,M = ~ {P-F, F~, - (P-F)P~,} (4.38) 

From this and the obvious results 

_ _  h 2 
d (poFo) = 0 and I~, = - -  {P~ v, de} 

d'r 2M , 

we can calculate the second time derivative of d~,: 

k 2M] {/5~'F 0, { P~F,,, 3~ } } (4.39) 

For the Majorana irreducible representations, the Wigner basis vectors 
- -  1 3 Ipjj3) are the basis vectors for the space of physical states. Here j ~, 7, 

5 for the two half-odd-integer Majorana representations and j = 0, 1, "~ ,  , . . 
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2 , . . . ,  for the two integer representations. Furthermore, from the results of 
Section 3, we find that in this basis 

1 I '~FNpjj3) = -L-_(sign po)(j + ~) pjj3) (4.40) 

Therefore, we obtain for the expectation value of (4.39) in this basis the 
following result: 

z z 1 z 

Thus we see that the expectation value of the interior position operator 
performs rotations with an angular frequency given by 

to = _ - -  j + (4.42) 
m 

While the expectation value (l Y~[} of  the center of  mass follows a straight 
world line in the direction of that of the center-of-mass momentum {IP~,I), 
the expectation value of the position X~,({IX~,I) = (IY~,I) + (Id~,l)), according 
to (4.42), demonstrates the Zitterbewegung. 

These calculations lead to a visualization of the model as an extended 
object which is rotating about its center of mass whose motion is determined 
by the Poincar6 group generators Pw The mass operator M = (p~,pr 
however, is now a function of the generators of the spectrum-generating group. 

When the constraint relation (4.16) is taken between the Wigner basis 
v e c t o r s  Ipjj3 ) in the Majorana irreducible representations, we obtain for the 
rotator excitations the following mass (squared) spectrum: 

m z= k z ( o ~ z - 9 ) + k 2 j ( j +  1) (4.43) 

4.2. Relativist ic  Q u a n t u m  Osci l lator 

Just as the relativistic quantum rotator was a relativistic generalization 
of the familiar quantum (rigid) rotator of molecular physics, in this section 
we consider a relativistic generalization of the familiar harmonic oscillator. 
The observables, again, can be chosen from among the operators defined in 
Section 2. The theoretical framework and the methodology employed in 
constructing the relativistic quantum oscillator (RQO) are the same as in the 
RQR model. Thus we begin by conjecturing the Hamiltonian for the RQO. 

The nonrelativistic harmonic oscillator, the conventional string, or the 
linearly rising Regge trajectories all suggest equal spacing for the mass- 
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squared spectrum. Therefore, according to the rules of constraint Hamiltonian 
mechanics, we seek to express the mass-squared operator P.W" in terms of 
an operator whose eigenvalues v are 

v = 0, 1 ,2 , - - -  

Such an operator appeared in the discussion of the RQR: /5~F~ in (4.40). 
Thus we postulate the following operator as the Hamiltonian for the RQR: 

H = v( P~P~ - l (4.44) 

where, as in (4.18), v = - 1/(2M) when the parameter "r is chosen as the 
proper time in the mean c.m., and where a '  is the constant discussed in 
Section 1. 

The expression (4.44) is in fact the simplest choice for the free (without 
electromagnetic coupling) Hamiltonian with the operators available in our 
model. 

With the operator (4.44) for the Hamiltonian, we can now justify the 
definition (2.13) of the interior momentum operator by obtaining an operator 
canonically conjugate to d~ defined in (2.5). Using the commutation relations 
(2.11) of the relativistic SGG, we obtain the proper time derivative d~, of d~, 
by calculating the commutator of the interior position with H given in (4.44). 
The result is 

1 [d~,, H ]  - v .,, tt~, = -~ ~ 'M g~F~, (4.45) 

Since axe should be equal (to within a normalization factor) to Md~, this 
justifies the definition (2.13) of the momentum operator as "rr~ = (l/v)dr 

The commutation relations for "rr~ can now be calculated in a straightfor- 
ward way using the commutation relations of the SGG. The results are 

['rr~, "try] - - i  E~,v and [d~, "rr~] .v 1 (c ,M)---~ z = -lg~,v ~ PpFP 

(4.46) 

These relations, together with (2.10), are the c.r. of our relativistic oscillator. 
They replace the conventional relativistic canonical commutation relations 
(Heisenberg) 

[d r, dv] = 0, ['rr~,, "rr,,] = 0, and [d~., 'n'~] = - i ,~ , ,  (4.47) 

which lead to the well-known difficulties. The relativistic commutation rela- 
tions (2.10) and (4.46) of interior position and momentum, which are the c.r. 
of S0(3, 2) in a disguised form, go into the usual Heisenberg c.r. only in the 
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nonrelativistic limit c ---, oo. In this limit the Poincar6 group ~ goes by Inonu 
and Wigner (1953) contraction into the Galilei group q3, and the S0(3 ,  2) 
algebra goes into the algebra of the 3-dimensional nonrelativistic oscillator. 2 
This limit can best be seen in the rest frame of the center of mass. 

From the definitions of d~ (2.5), ,rr~ (2.13), and E ~  (2.10), we obtain 
in the rest frame of the c.m., i.e., for p~ = (1, 0, 0, 0), 

1 
do ="tro = O, d,, = So, M - t ,  "rrm = a '  M - t F "  (4.48a) 

Z0m = 0, Emn = Sin, (4.48b) 

where m, n = 1, 2, 3. In the nonrelativistic limit (Bohm et al., 1985b) dm 
and rr,~ become commuting operators d~ ~) and ~r~ ~) fulfilling the Heisenberg 
c.r. (2.3a). The constraint relation (4.44) contracts in this limit to the follow- 
ing constraint: 

HO ~ = l ~2 + 1 ~l~)z + 1,__3 ~(~)2 (4.49) 
2m 4m a - 

This limit for the particular representation D(I, 0) of S0(3 ,  2) provides the 
inspiration for some of the above choices and justifies the name relativistic 
oscillator for the model given by (4.44). 

As we saw in Section 3, there are many other irreducible representations 
of SO(3, 2). In order to determine the spectrum of the relativistic extended 
object, we have to first choose the right class of representations, and then, 
inside this class, the particular irreducible representation which describes our 
system. In order to allow for the oscillations, we have to go to a larger 
representation space of SO(3, 2)s~,.r~ than the irreducible Majorana represen- 
tation spaces considered for the relativistic rotator. We will choose the class 
of representations which are conventionally denoted by D(s + 1, s), where 
s can take the values s = 0, or ~ or 1 or ff . . . .  for the following reasons: 

1. The representation D( 1, 0) goes in the limit c ---, ~o into the representa- 
tion of the ordinary, three-dimensional spinless nonrelativistic oscillator. 

2. The number s that characterizes each of these representations is 
identical to the hadronic total quark spin number. 

Thus for the p-meson and the other meson resonances with higher values 
of hadron spin j which belong to the same Regge trajectory, we should 
choose the representation D(2, 1) because all these resonances have total 
quark spin s = 1. For the nucleon and the nucleon resonances, which have 
total quark spin s = �89 we should choose D( 3, �89 

These results suggest the following picture for our relativistic model for 
the extended object. The object consists of a quark-antiquark (or quark- 

-" This was known before this model was developed. See. e.g. Celeghin and Tarlini. (1982). 
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diquark) pair connected by a vibrating and rotating flux tube. The interior 
position operators d~ can be considered as defining the "length and direction" 
of the flux tube. The collective motion then consists of the vibrations of the 
tube length and the rotations (about the c.m.) of the tube axis. This picture 
is more accurate in the classical and nonrelativistic limits, where the notions 
of trajectory and rigidity, respectively, acquire their usual meanings. The 
spectra of mass and spin levels of hadrons are then obtained as these vibra- 
tional and rotational excitations of this relativistic flux tube. 

5. HADRON SPECTRUM 

Since a hadron in this model is a vibrationally (and/or rotationally) 
excited state of the relativistic extended flux tube, we have to determine the 
spectrum of the vibrational quantum number ix (and the rotational quantum 
number j )  in an irreducible representation of the relativistic spectrum-generat- 
ing group. From the discussion in Section 3, for the representation D(I, 0) 
one can see that 

R 
ix = eigenvalue of (P~F ~) = eigenvalue of F ~ (5.1) 

is the vibrational quantum number, and j with 

j ( j  + 1) eigenvalue of (W) R = = eigenvalue of ~2 (5.2) 

is the rotational quantum number. The R above the equality sign in the above 
equations indicates that these equalities hold in the rest frame. 

Indeed the diagram in Fig. 1 is the energy diagram of the 3-dimensional 
harmonic oscillator, but in terms of the mathematics of S0(3, 2), it is identical 
to the weight diagram (K-type) of the irreducible representation D(l,  0). 

Mathematically, the numbers (la,o = s + 1, J0 = s) that characterize the 
irreducible representations D(s + 1, s) are the lowest weights. The weights 
are the ordered pairs (ix, j )  which characterize the irreducible representation 
of the maximally compact subgroup K = SO(2)l -o • SO(3)s~J of S0(3, 2) 
which can occur in the representation D(IXo, Jo)- In terms of the operators, 
the weights are given by (5.1) and (5.2). 

For physical reasons ("stability of matter"), we are interested only in 
the irreps of the SGG whose weights are semibounded. The D(s + 1, s) are 
a particular class of these representations with semibounded weights. 

The weights of the K-type D(2, 1), are shown by the dots in Fig. 2 
(Bohm, 1992; Bohm and Wickramasekara, 1997). The states with j = ix = 
1 --- v (the vibrational quantum number), which would in the terminology 
of nuclear physics be the yrast states, represent the hadrons on the Regge 
trajectory, while the ones with j < v represent the "daughters." 
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Fig. 1. The weight diagram of the representation D(I. 0), identical to the energy diagram 
of the three-dimensional nonrelativistic oscillator. 

The weight diagram (K-type) of representation D(s + 1, s) gives a 
graphical representation of the spectrum (IX, j )  in that D. In the K-type of 
D(I, 0) shown in Fig. 1, each dot gives the value of a pair (Ix, j) .  So to each 
dot corresponds a hadron state with the vibrational quantum number Ix and 
the rotational quantum number j .  Empirically, D(I, 0) is not the correct 
representation for the Regge trajectory of the p-meson, because the p-trajec- 
tory does not have a j = 0 ground state. But since s is understood as the 
total quark spin, which for the p-meson is equal to 1, not D(I, 0), but D(2, 
1) must be the right representation for the p-trajectory. Similarly, D( 3, �89 with 
s = �89 must be the correct representation for the nucleon trajectory. 

Thus the spectrum of the vibrational and rotational quantum numbers 
of the "relativistically" vibrating and rotating flux tube is determined by the 
weight diagrams of the relativistic SGG [K-type of S0(3, 2)]. The mass 
spectrum is obtained from the relativistic Hamiltonian, i.e., from the constraint 
relation as in the formalism of constraint Hamiltonian mechanics. 
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Fig. 2. The weight diagram of  the representation D(2, 1) with the assignment of  mesons. Each 
dot represents a meson with spin j and vibrational quantum number  l.z. The mesons assigned 
are from the Particle Data Table (1990). 

The Hamiltonian (4.44) of the relativistic vibrator leads to the master 
equation 

( 1 / S r ~  - P~P~')I~) = 0 (5.3) 

which is reminiscent of the Dirac equation 

mo P~'Y~ r~) = 0 

with the �89 replaced by F r Note that, in particular, �89 ~/0 = (0 I ._01) is replaced 
by 1 -'~ which is an infinite-dimensional operator with a nontrivial spectrum 
(Mukunda et al., 1982). The spectrum of the mass-squared operator P~P~ is 
then uniquely and completely determined from the spectrum of/5r 
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Just as for the RQR model, calling m 2 the eigenvalues of the operator 
P~P~ = M% one obtains from (5.3) the mass formula 

1 
m Z = m ~ + - - v ,  v = p ~ -  1 = 1 , 2 , 3  . . . . .  j =  1 ,2  . . . . .  v (y'  

(5.4) 

This means that all mass levels with the same vibrational quantum number 
have the same mass. 

For the Regge trajectory j = v (yrast states), one obtains 

1 
m2 = m o  2 + ---7 J (5.5) 

ot 

In order to lift the mass degeneracy in j one has to use the Hamiltonian of 
the relativistic vibrating rotator. In the same way as the oscillator and rotator 
models are combined in molecular physics, we propose to combine the RQR 
and RQO Hamiltonians to obtain a Hamiltonian for the "relativistically" 
rotating and oscillating extended quantum system. Hence, 

H =  v ( p ~ p ~ -  c~ 1--7/5~:F~ - k 2 f f ' -  mZ~ (5.6) 

This Hamiltonian describes the rotations as well as the oscillations of 
the flux tube. From the spectra of  the operators (5.1) and (5.2) one then 
obtains for the relativistic Hamiltonian (5.6) the mass spectrum 

m z = m 2 + 1-- 7 v + kz j ( j  + 1), 

v = p , - -  1 =  1 , 2 , 3  . . . . .  

j = 1, 2 . . . . .  v (5.7) 

The numbers attached to the dots in Fig. 2, for example, are the experimental 
masses of  the meson resonances associated to that state with quantum numbers 
(v, j )  of  the dot. 

These masses in Fig. 2 are fitted to (5.7) and from this fit, we find 
l / a  = 1.04 (GeV) 2 and k z = 0.02 (GeV) z. Equally good fits have been 
obtained with this model both for, as evident from Fig. 3, the nucleon reso- 
nances and for the hadron towers of  different flavors (with a '  and h 2 depending 
on the flavor). 

Therewith we see that the vibrational and rotational excitations of  the 
interior degrees of freedom of an extended relativistic object are described 
as different states of  an irreducible representation of the spectrum-generating 
group. These states are represented by irreducible representation spaces 
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Fig. 3. The weight diagram of the representation/)(3/2, 1/2) with the assignment of 
nucleons. The nucleons assigned are from the Particle Data Table (1990). 

~g'~(m, j )  of the Poincar6 group---the symmetry group of the relativistic space- 
time. The level splitting, i.e., the mass spectrum, is then determined by an 
"elementary length" l = ~ ~ 0.2 • 10 -13 cm. While numerical results 
must not be overemphasized, the preceding calculations are indicative that 
the spectra of  hadrons can be obtained in much the same way as in molecular 
and nuclear physics, but with a relativistic theory. The one presented here 
arises from a union of  Heisenberg's idea of  an elementary length with the 
idea that the mass spectrum of  hadrons has a group-theoretic interpretation. 
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